ÌâÄ¿ÄÚÈÝ
2£®Ö±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ²¢ÔÚÁ½ÖÖ×ø±êϵÖÐÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£®Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßcµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-10¦Ñcos¦È+9=0£¬µãPÊÇÖ±ÏßlÉϵĵ㣬¹ýµãPµÄÖ±ÏßÓëÇúÏßcÏàÇÐÓÚµãM£¬Ôò|PM|×îСֵΪ4£®·ÖÎö Ö±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£»ÀûÓÃ$\left\{\begin{array}{l}{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\\{x=¦Ñcos¦È}\end{array}\right.$¼´¿É°ÑÇúÏßCµÄ¼«×ø±ê·½³Ì¦Ñ2-10¦Ñcos¦È+9=0£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
µ±PC¡Ílʱ£¬|PM|È¡µÃ×îСֵ=$\sqrt{|PC{|}^{2}-{r}^{2}}$£®
½â´ð ½â£ºÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯Îªx+y+3=0£»
ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-10¦Ñcos¦È+9=0£¬»¯Îªx2+y2-10x+9=0£¬Å䷽Ϊ£¨x-5£©2+y2=16£®
µ±PC¡Ílʱ£¬|PM|È¡µÃ×îСֵ=$\sqrt{|PC{|}^{2}-{r}^{2}}$=$\sqrt{£¨\frac{5+0+3}{\sqrt{2}}£©^{2}-16}$=4£®
¹Ê´ð°¸Îª£º4£®
µãÆÀ ±¾Ì⿼²éÁ˰ѲÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Ô²µÄÇÐÏßµÄÐÔÖÊ¡¢¹´¹É¶¨Àí£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | £¨-8£¬8£© | B£® | £¨8£¬8£© | C£® | £¨-8£¬-8£©»ò£¨8£¬-8£© | D£® | £¨-8£¬8£©»ò£¨8£¬8£© |
A£® | 4 | B£® | 5 | C£® | 6 | D£® | 7 |
A£® | cosA=cosB | B£® | sinA=sinB | C£® | bcosA=acosB | D£® | acosA=bcosB |