题目内容
【题目】已知椭圆:的离心率为,其左焦点与抛物线的焦点重合.
(1)求椭圆的方程;
(2)过动点的直线交轴于点,交椭圆于点,在第一象限,,过点做轴的垂线交椭圆于点,连接并延长交椭圆于另一点.设直线的斜率分别为,证明:为定值.
【答案】(1)(2)见证明
【解析】
(1)先由抛物线方程求得抛物线的焦点,可得c=1,再由椭圆的离心率可求得a,再由a,b,c的关系可以求出b,然后得到椭圆的方程.
(2)由直线过x轴上定点,所以设出直线的横截式方程,先计算B点坐标,又因为,所以根据线段的比例关系可以得到A的坐标,再由对称关系得到D点坐标,由两点式计算直线DT的斜率,然后求比值.
(1)由题意可知题意的左焦点为,因为离心率为,
所以,
所以题意的方程为.
(2)设直线的方程为,(),则
,可求得;
因为,
所以,且,
所以,
所以为定值.
练习册系列答案
相关题目
【题目】某蛋糕店制作并销售一款蛋糕,当天每售出个利润为元,未售出的每个亏损元.根据以往天的统计资料,得到如下需求量表,元旦这天,此蛋糕店制作了个这种蛋糕.以(单位:个, )表示这天的市场需求量. (单位:元)表示这天售出该蛋糕的利润.
需求量/个 | |||||
天数 | 10 | 20 | 30 | 25 | 15 |
(1)将表示为的函数,根据上表,求利润不少于元的概率;
(3)元旦这天,该店通过微信展示打分的方式随机抽取了名市民进行问卷调查,调查结果如下表所示,已知在购买意愿强的市民中,女性的占比为.
购买意愿强 | 购买意愿弱 | 合计 | |
女性 | 28 | ||
男性 | 22 | ||
合计 | 28 | 22 | 50 |
完善上表,并根据上表,判断是否有的把握认为市民是否购买这种蛋糕与性别有关?
附: .
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |