题目内容

(本小题满分12分)如图,在三棱锥中,底面

分别在棱上,且            
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的余弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
解:【解法1】本题主要考查直线和平面垂直、直线与平面所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.
(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.   又,∴AC⊥BC.∴BC⊥平面PAC.…………
(Ⅱ)∵D为PB的中点,DE//BC,
,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴
∴在Rt△ABC中,,∴.
∴在Rt△ADE中,,  
与平面所成的角的余弦值为.…………
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角的平面角,
∵PA⊥底面ABC,∴PA⊥AC,∴.      
∴在棱PC上存在一点E,使得AE⊥PC,这时
故存在点E使得二面角是直二面角.…………
【解法2】如图,以A为原煤点建立空间直角坐标系
,由已知可得  .
(Ⅰ)∵,     ∴,∴BC⊥AP.
又∵,∴BC⊥AC,∴BC⊥平面PAC.…………
(Ⅱ)∵D为PB的中点,DE//BC,∴E为PC的中点, ∴
∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,
,∴.
与平面所成的角的余弦值为.………   (Ⅲ)同解法1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网