题目内容
(本小题满分12分)
己知圆C: (x – 2 )2 + y 2 =" 9," 直线l:x + y = 0.
(1) 求与圆C相切, 且与直线l平行的直线m的方程;
(2) 若直线n与圆C有公共点,且与直线l垂直,求直线n在y轴上的截距b的取值范围;
(1) x + y – 2 +3="0," 或x + y – 2 –3="0." (2) – 2–3£ b £ – 2+3
解析试题分析:(1) ∵直线m∥直线x + y = 0,
∴设m: x + y + c = 0,∵直线m与圆C相切,∴ 3 = ,
解得 c =" –" 2 ±3
得直线m的方程为:x + y – 2 +3="0," 或x + y – 2 –3="0."
(2) 由条件设直线n的方程为:y = x +b ,
代入圆C方程整理得:2x2 +2 (b – 2)x + b2 – 5 = 0,
∵直线l与圆C有公共点,
∴ △ =" 4(b" – 2)2 – 8(b2 – 5 ) =" –" 4b2 – 16b +56 ≥ 0,即:b2 + 4b –14 £ 0
解得:– 2–3£ b £ – 2+3
考点:本试题考查了两直线的位置关系。
点评:运用两直线的平行的关系来设出所求的直线方程,并代点来求解方程。同时要理解截距的概念,表示的为数字,不是距离,是一个可正可负的数字。结合直线与圆的位置关系得到取值范围,属于中档题。
练习册系列答案
相关题目