题目内容
12.在平面直角坐标系xoy中,点M(x,y)的坐标满足不等式组$\left\{\begin{array}{l}y≥1\\ y≤2x-1\\ x+y≤m\end{array}\right.$,已知N(1,-1)且$\overrightarrow{ON}$•$\overrightarrow{OM}$的最小值为-1,则实数m=( )A. | 0 | B. | 2 | C. | 5 | D. | 6 |
分析 作出不等式组对应的平面区域,利用向量数量积的定义将目标函数进行化简,结合z的几何意义进行求解即可.
解答 解:∵$\overrightarrow{ON}•\overrightarrow{OM}$的最小值为-1,
∴x-y的最小值为-1,
设z=x-y,解:作作出不等式组对应的平面区域如图:
由z=x-y,得y=x-z表示,斜率为1纵截距为-z的一组平行直线,
∵x-y的最小值为-1,
∴作出直线x-y=-1,
则直线x-y=-1与y=2x-1相交于A,此时A为一个边界点,
由$\left\{\begin{array}{l}{x-y=-1}\\{y=2x-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3),
此时A也在直线x+y=m上,
则m=2+3=5,即直线为x+y=5,
平移直线y=x-z,当直线y=x-z经过点A时,直线y=x-z的截距最大,此时z最小,此时zmin=2-3=-1,
满足条件.
故m=5,
故选:C.
点评 本题主要考查线性规划的基本应用,利用z的几何意义以及向量数量积将目标函数进行化简是解决本题的关键.,注意利用数形结合来解决.
练习册系列答案
相关题目
2.将A,B,C,D,E五种不同的文件随机放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,则文件A,B被放在相邻的抽屉内且文件C,D被放在不相邻的抽屉内的种数有( )
A. | 120 | B. | 240 | C. | 480 | D. | 720 |
7.已知向量|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$.若向量$\overrightarrow m$满足|$\overrightarrow{m}$-$\overrightarrow{a}$-$\overrightarrow{b}$|=1,则$|{\overrightarrow m}$|的最大值是( )
A. | 2$\sqrt{3}$-1 | B. | 2$\sqrt{3}$+1 | C. | 4 | D. | $\sqrt{6}+\sqrt{2}$+1 |
4.已知角α终边与单位圆x2+y2=1的交点为$P(\frac{1}{2},y)$,则$sin(\frac{π}{2}+2α)$=( )
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | 1 |
1.函数f(x)=sin(-2x)的一个递增区间是( )
A. | $(0,\frac{π}{4})$ | B. | $(-π,-\frac{π}{2})$ | C. | $(\frac{3π}{4},2π)$ | D. | $(-\frac{π}{2},-\frac{π}{4})$ |