题目内容
2.将A,B,C,D,E五种不同的文件随机放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,则文件A,B被放在相邻的抽屉内且文件C,D被放在不相邻的抽屉内的种数有( )A. | 120 | B. | 240 | C. | 480 | D. | 720 |
分析 根据题意,用捆绑法,将A,B和C,D分别看成一个元素,相应的抽屉看成5个,把3个元素在5个位置排列,由排列数公式可得其排列数目,看成一个元素的A,B和C,D两部分还有一个排列,根据分步计数原理得到结果
解答 解:如果只考虑A、B必须相邻,其它不管,则A、B捆绑在一起,看成一个元素,则有A22A64=720种;
∵文件A、B必须放入相邻的抽屉内,文件C、D也必须放相邻的抽屉内
∴A,B和C,D分别看成一个元素,相应的抽屉看成5个,
则有3个元素在5个位置排列,共有A53种结果,
组合在一起的元素还有一个排列,共有A22A22A53=240种结果,
所以A、B必须相邻,C、D不相邻,则有720-240=480种,
故选:C.
点评 本题考查排列、组合的运用,题目中要求两个元素相邻的问题,一般把这两个元素看成一个元素进行排列,注意这两个元素内部还有一个排列.
练习册系列答案
相关题目
10.已知i为虚数单位,若$\frac{1+i}{z}=1-2i$,则复数z所对应的点所在的象限是( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
14.下列说法中正确的是( )
A. | 若命题p:?x∈R有x2>0,则¬p:?x∈R有x2≤0 | |
B. | 若p是q的充分不必要条件,则¬p是¬q的必要不充分条件 | |
C. | 若命题p:$\frac{1}{x-1}$>0,则¬p:$\frac{1}{x-1}$≤0 | |
D. | 方程ax2+x+a=0有唯一解的充要条件是a=±$\frac{1}{2}$ |