题目内容
【题目】已知椭圆: , 左右焦点分别为F1 , F2 , 过F1的直线l交椭圆于A,B两点,若|BF2|+|AF2|的最大值为5,则b的值是
【答案】
【解析】解:由0<b<2可知,焦点在x轴上,
∵过F1的直线l交椭圆于A,B两点,∴|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8
∴|BF2|+|AF2|=8﹣|AB|.
当AB垂直x轴时|AB|最小,|BF2|+|AF2|值最大,
此时|AB|=b2 , ∴5=8﹣b2 ,
解得b= .
故答案为 .
由题意可知椭圆是焦点在x轴上的椭圆,利用椭圆定义得到|BF2|+|AF2|=8﹣|AB|,再由过椭圆焦点的弦中通径的长最短,可知当AB垂直于x轴时|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值.
练习册系列答案
相关题目