题目内容
) (本题满分14分) 设等差数列{an}的首项a1为a,前n项和为Sn.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
Ⅰ) 解:设等差数列{an}的公差为d,则Sn=na+,
S1=a,S2=2a+d,S4=4a+6d.由于S1,S2,S4成等比数列,因此
=S1S4,即得d (2a-d)=0.所以,d=0或2a.
(1) 当d=0时,an=a;
(2) 当d=2a时,an=(2n-1)a. …………6分
(Ⅱ) 证明:采用反证法.不失一般性,不妨设对某个m∈N*,Sm,Sm+1,Sm+2构成等比数列,即.因此
a2+mad+m(m+1)d2=0, ①
(1) 当d=0时,则a=0,此时Sm=Sm+1=Sm+2=0,与等比数列的定义矛盾;
(2) 当d≠0时,要使数列{an}的首项a存在,必有①中的Δ≥0.
然而Δ=(md)2-2m(m+1)d2=-(2m+m2)d2<0,矛盾.
综上所述,对任意正整数n,Sn,Sn+1,Sn+2都不构成等比数列. …………14分
S1=a,S2=2a+d,S4=4a+6d.由于S1,S2,S4成等比数列,因此
=S1S4,即得d (2a-d)=0.所以,d=0或2a.
(1) 当d=0时,an=a;
(2) 当d=2a时,an=(2n-1)a. …………6分
(Ⅱ) 证明:采用反证法.不失一般性,不妨设对某个m∈N*,Sm,Sm+1,Sm+2构成等比数列,即.因此
a2+mad+m(m+1)d2=0, ①
(1) 当d=0时,则a=0,此时Sm=Sm+1=Sm+2=0,与等比数列的定义矛盾;
(2) 当d≠0时,要使数列{an}的首项a存在,必有①中的Δ≥0.
然而Δ=(md)2-2m(m+1)d2=-(2m+m2)d2<0,矛盾.
综上所述,对任意正整数n,Sn,Sn+1,Sn+2都不构成等比数列. …………14分
略
练习册系列答案
相关题目