题目内容

) (本题满分14分) 设等差数列{an}的首项a1a,前n项和为Sn
(Ⅰ) 若S1S2S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:n∈N*, SnSn1Sn2不构成等比数列.
Ⅰ) 解:设等差数列{an}的公差为d,则Snna
S1aS2=2adS4=4a+6d.由于S1S2S4成等比数列,因此
S1S4,即得d (2ad)=0.所以,d=0或2a
(1) 当d=0时,ana
(2) 当d=2a时,an=(2n-1)a.                 …………6分
(Ⅱ) 证明:采用反证法.不失一般性,不妨设对某个m∈N*,SmSm1Sm2构成等比数列,即.因此
a2madm(m+1)d2=0,     ①
(1) 当d=0时,则a=0,此时SmSm1Sm2=0,与等比数列的定义矛盾;
(2) 当d≠0时,要使数列{an}的首项a存在,必有①中的Δ≥0.
然而Δ=(md)2-2m(m+1)d2=-(2mm2)d2<0,矛盾.
综上所述,对任意正整数nSnSn1Sn2都不构成等比数列.  …………14分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网