题目内容
【题目】已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的极坐标方程,并求出曲线与公共弦所在直线的极坐标方程;
(2)若射线与曲线交于两点,与曲线交于点,且,求的值.
【答案】(1)曲线的极坐标方程为,公共弦所在直线的极坐标方程(2)
【解析】
(1)先得到C1的一般方程,再由极坐标与直角坐标的互化公式得到极坐标方程,将,联立,得到公共弦所在直线的极坐标方程;
(2)先求得|OA|,|OB|,可得|OA||OB|,化简可得到.
(1)曲线的直角坐标方程为,将极坐标与直角坐标的互化公式:代入,
可得曲线的极坐标方程为.
联立与,得
∴曲线与公共弦所在直线的极坐标方程,(或和)
(2)把,代入,,
得;
又,则=2,可得
所以,
【题目】2019年12月16日,公安部联合阿里巴巴推出的“钱盾反诈机器人”正式上线,当普通民众接到电信网络诈骗电话,公安部钱盾反诈预警系统预警到这一信息后,钱盾反诈机器人即自动拨打潜在受害人的电话予以提醒,来电信息显示为“公安反诈专号”.某法制自媒体通过自媒体调查民众对这一信息的了解程度,从5000多参与调查者中随机抽取200个样本进行统计,得到如下数据:男性不了解这一信息的有50人,了解这一信息的有80人,女性了解这一信息的有40人.
(1)完成下列列联表,问:能否在犯错误的概率不超过0.01的前提下,认为200个参与调查者是否了解这一信息与性别有关?
了解 | 不了解 | 合计 | |
男性 | |||
女性 | |||
合计 |
(2)该自媒体对200个样本中了解这一信息的调查者按照性别分组,用分层抽样的方法抽取6人,再从这6人中随机抽取3人给予一等奖,另外3人给予二等奖,求一等奖与二等奖获得者都有女性的概率.
附:
P(K2≥k) | 0.01 | 0.005 | 0.001 |
k | 6.635 | 7.879 | 10.828 |