题目内容
【题目】已知为椭圆上的动点,过点作轴的垂线段, 为垂足,点满足.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)若两点分别为椭圆的左右顶点, 为椭圆的左焦点,直线与椭圆交于点,直线的斜率分别为,求的取值范围.
【答案】(Ⅰ)动点的轨迹的方程为 (Ⅱ)
【解析】【试题分析】(1)先设,进而求得点,再依据题设条件求得,然后借助为椭圆上的点,进而消去参数从而求得动点的轨迹的方程为;(2)先求出点,再设,进而依据求出,进而借助且,及在和都是单调减函数,求出的范围为:
解:(Ⅰ)设依题意,且,
∵,即,
则有.
又∵为椭圆上的点,
可得,即,
即动点的轨迹的方程为.
(Ⅱ)依题意,设
∵为圆的直径,则有,故的斜率满足,
,
∵点不同于两点且直线的斜率存在,故且,
在和都是单调减函数,
的范围为,
故 .
练习册系列答案
相关题目
【题目】根据“2015年国民经济和社会发展统计公报” 中公布的数据,从2011 年到2015 年,我国的
第三产业在中的比重如下:
年份 | |||||
年份代码 | |||||
第三产业比重 |
(1)在所给坐标系中作出数据对应的散点图;
(2)建立第三产业在中的比重关于年份代码的回归方程;
(3)按照当前的变化趋势,预测2017 年我国第三产业在中的比重.
附注: 回归直线方程中的斜率和截距的最小二乘估计公式分别为:
, .