题目内容
1.设f(x)是定义在R上的函数,且满足下列关系:f(10+x)=f(10-x),f(20-x)=-f(20+x),则函数f(x)为奇函数.(填奇、偶)分析 将题中两个等式相结合,运用变量代换的方法可证出f(40+x)=f(x),从而得出f(x)是周期T=40的周期函数,再根据f(-x)=f(40-x)结合f(20-x)=-f(20+x),可证出f(-x)=f(x),从而得到本题的答案.
解答 解:∵f(20-x)=f[10+(10-x)]=f[10-(10-x)]=f(x)=-f(20+x).
∴f(20+x)=-f(40+x),结合f(20+x)=-f(x)得到f(40+x)=f(x)
∴f(x)是以T=40为周期的周期函数;
又∵f(-x)=f(40-x)=f(20+(20-x)=-f(20-(20-x))=-f(x).
∴f(x)是奇函数.
故答案为:奇.
点评 本题主要考查函数奇偶性的判断,着重考查了函数的定义和抽象函数的应用等知识,根据条件推出函数的周期是解决本题的关键..
练习册系列答案
相关题目
11.函数f(x)=|x|+1是( )
A. | 奇函数 | B. | 偶函数 | ||
C. | 既是奇函数又是偶函数 | D. | 非奇非偶函数 |
16.y=f(x)是定义在R上的函数,且满足f(2-x)+f(x+2)=0,当x>2时,f(x)单调递增,若x1+x2<4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值( )
A. | 一定小于零 | B. | 可能等于零 | C. | 一定大于零 | D. | 正负均有可能 |