题目内容
【题目】某中学将100名高一新生分成水平相同的甲、乙两个平行班,每班50人,某教师采用、两种不同的教学模式分别在甲、乙两个班进行教改实验,为了了解教学效果,期末考试后,该教师分别从两班中各随机抽取20名学生的成绩进行统计,作出茎叶图如图所示,记成绩不低于90分为“成绩优秀”.
(1)在乙班的20个个体中,从不低于86分的成绩中随机抽取2人,求抽出的两个人均“成绩优秀”的概率;
(2)由以上统计数据填写列联表;能否在犯错误的概率不超过0.10的前提下认为成绩优秀与教学模型有关.
甲班() | 乙班() | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.847 | 5.024 |
【答案】(1)。
(2)列联表见解析;在犯错误的概率不超过0.10的前提下认为“成绩优秀”与教学模式有关.
【解析】分析:(1)利用列举法确定基本事件的个数,由此能求出抽出的两个均“成绩优秀”的概率;
(2)由已知数据能完成2×2列联表,据列联表中的数据,求出K2≈3.137>2.706,所以有90%的把握认为“成绩优秀”与教学方式有关.
详解:
(1)设抽出的两人均为“成绩优秀”的为事件,从不低于86分的成绩中随机抽取2个的基本事件有,,,,,,,,,,,,,,共15个.
事件就其中画线部分,共10个.
∴所求概率.
(2)列表
甲班() | 乙班() | 总计 | |
成绩优秀 | 1 | 5 | 6 |
成绩不优秀 | 19 | 15 | 34 |
总计 | 20 | 20 | 40 |
∴.
∵,∴在犯错误的概率不超过0.10的前提下认为“成绩优秀”与教学模式有关.
【题目】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
作物产量(kg) | 300 | 500 |
概率 | 0.5 | 0.5 |
作物市场价格(元/kg) | 6 | 10 |
概率 | 0.4 | 0.6 |
(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.