题目内容

【题目】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:

作物产量(kg)

300

500

概率

0.5

0.5

作物市场价格(元/kg)

6

10

概率

0.4

0.6


(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

【答案】
(1)解:设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,

则P(A)=0.5,P(B)=0.4,

∵利润=产量×市场价格﹣成本,

∴X的所有值为:

500×10﹣1000=4000,500×6﹣1000=2000,

300×10﹣1000=2000,300×6﹣1000=800,

则P(X=4000)=P( )P( )=(1﹣0.5)×(1﹣0.4)=0.3,

P(X=2000)=P( )P(B)+P(A)P( )=(1﹣0.5)×0.4+0.5(1﹣0.4)=0.5,

P(X=800)=P(A)P(B)=0.5×0.4=0.2,

则X的分布列为:

X

4000

2000

800

P

0.3

0.5

0.2


(2)解:设Ci表示事件“第i季利润不少于2000元”(i=1,2,3),

则C1,C2,C3相互独立,

由(1)知,P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),

3季的利润均不少于2000的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512,

3季的利润有2季不少于2000的概率为P( C2C3)+P(C1 C3)+P(C1C2 )=3×0.82×0.2=0.384,

综上:这3季中至少有2季的利润不少于2000元的概率为:0.512+0.384=0.896.


【解析】(1)分别求出对应的概率,即可求X的分布列;(2)分别求出3季中有2季的利润不少于2000元的概率和3季中利润不少于2000元的概率,利用概率相加即可得到结论.
【考点精析】利用离散型随机变量及其分布列对题目进行判断即可得到答案,需要熟知在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网