题目内容
【题目】设函数f(x)=
(1)令N(x)=(1+x)2﹣1+ln(1+x),判断并证明N(x)在(﹣1,+∞)上的单调性,并求N(0);
(2)求f(x)在定义域上的最小值;
(3)是否存在实数m,n满足0≤m<n,使得f(x)在区间[m,n]上的值域也为[m,n]? (参考公式:[ln(1+x)′]= )
【答案】
(1)解:当x>﹣1时,N′(x)=2x+2+ >0
所以,N(x)在(﹣1,+∞)上是单调递增,N(0)=0
(2)解:f(x)的定义域是(﹣1,+∞)
当﹣1<x<0时,N(x)<0,所以,f′(x)<0,
当x>0时,N(x)>0,所以,f′(x)>0,
所以,在(﹣1,0)上f(x)单调递减,在(0,+∞)上,f(x)单调递增,
所以,fmin=f(0)=0
(3)解:由(2)知f(x)在[0,+∞)上是单调递增函数,
若存在m,n满足条件,则必有f(m)=m,f(n)=n,
也即方程f(x)=x在[0,+∞)上有两个不等的实根m,n,
但方程f(x)=x,即 =0只有一个实根x=0,
所以,不存在满足条件的实数m,n
【解析】(1)先对函数求导,由导函数在x>﹣1时的符号判断函数的单调性,代入求N(0)的值,(2)直接求定义域,利用f(x)单调性求解函数f(x)的最小值、值域,(3)假设存在符合条件的m,n则有 ,推导可判断m,n是否存在.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
【题目】我校高二年级共2000名学生,其中男生1200人.为调查学生们的手机使用情况,采用分层抽样的方法,随机抽取100位学生每周平均使用手机上网时间的样本数据(单位:小时).根据这100个数据,得到学生每周平均使用手机上网时间的频率分布直方图(如图所示),其中样本数据分组区间分别为.
(1)应收集男生、女生样本数据各多少人?
(2)估计我校高二年级学生每周平均使用手机上网时间超过4小时的概率.
(3)将平均每周使用手机上网时间在内定义为“长时间使用手机”,在内定义为“短时间使用手机”.在样本数据中,有25名学生不近视.请完成下列2×2列联表,并判断是否有99.5%的把握认为“学生每周使用手机上网时间与近视程度有关”.
近视 | 不近视 | 合计 | |
长时间使用手机上网 | |||
短时间使用手机上网 | 15 | ||
合计 | 25 |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 6.635 | 7.879 |