题目内容
【题目】我校高二年级共2000名学生,其中男生1200人.为调查学生们的手机使用情况,采用分层抽样的方法,随机抽取100位学生每周平均使用手机上网时间的样本数据(单位:小时).根据这100个数据,得到学生每周平均使用手机上网时间的频率分布直方图(如图所示),其中样本数据分组区间分别为.
(1)应收集男生、女生样本数据各多少人?
(2)估计我校高二年级学生每周平均使用手机上网时间超过4小时的概率.
(3)将平均每周使用手机上网时间在内定义为“长时间使用手机”,在内定义为“短时间使用手机”.在样本数据中,有25名学生不近视.请完成下列2×2列联表,并判断是否有99.5%的把握认为“学生每周使用手机上网时间与近视程度有关”.
近视 | 不近视 | 合计 | |
长时间使用手机上网 | |||
短时间使用手机上网 | 15 | ||
合计 | 25 |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 6.635 | 7.879 |
【答案】(1)60人,40人,(2)0.75(3) 有99.5%的把握认为“学生每周使用手机上网时间与近视程度有关”.
【解析】分析:(1)高二年级男女生之比为,故按比例抽取的男生人数为,女生人数为.
(2)用样本中的频率代替概率,计算上网时间小于4的频率(也就是概率)可得上网时间不少于4小时的概率.
(3)根据(2)的概率得到百人中长时间上网的人数为,从而可得表中缺省的各数据.通过计算的值来判断使用手机上网时间与近视的相关程度.
详解:(1)男生人数:(人),女生人数:(人);
(2)学生每周平均使用手机上网时间超过4小时的概率
;
(3)由(2)问可知,的人数为75人,的人数为25人.则2×2列联表如下:
近视 | 不近视 | 合计 | |
长时间使用手机上网 | 65 | 10 | 75 |
短时间使用手机上网 | 10 | 15 | 25 |
合计 | 75 | 25 | 100 |
,
故有的把握认为“学生每周使用手机上网时间与近视程度有关”.
【题目】某地区2011年至2017年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求样本中心点坐标;
(2)已知两变量线性相关,求y关于t的线性回归方程;
(3)利用(2)中的线性回归方程,分析2011年至2017年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2019年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:.
【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下资料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(Ⅰ)从这5天中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25”的概率.
(Ⅱ)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另3天的数据,求出y关于x的线性回归方程 = x+ .
(参考公式: = , = ﹣ )