题目内容
【题目】已知公差不为零的等差数列{an}中, S2=16,且成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和Tn.
【答案】(1)an=11-2n(n∈N*).(2)见解析.
【解析】
(1)S2=16,成等比数列,解得首项和公差进而得到通项;(2)当n≤5时,Tn=a1+a2+…+an, 直接按照等差数列求和公式求和即可, n≥6,Tn=a1+a2+…+a5-a6-a7- …-an =n2-10n+50,写成分段即可.
(1)由S2=16,成等比数列,得解得
所以等差数列{an}的通项公式为an=11-2n(n∈N*).
(2)当n≤5时,Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=Sn=-n2+10n.
当n≥6时,Tn=|a1|+|a2|+…+|an|=a1+a2+…+a5-a6-a7- …-an=2S5-Sn=2×(-52+10×5)-(-n2+10n)=n2-10n+50,
故Tn=
【题目】一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,具有线性相关关系,下表为抽样试验的结果:
转速(转/秒) | 8 | 10 | 12 | 14 | 16 |
每小时生产有缺点的零件数(件) | 5 | 7 | 8 | 9 | 11 |
(1)如果对有线性相关关系,求回归方程;
(2)若实际生产中,允许每小时生产的产品中有缺点的零件最多有1个,那么机器的运转速度应控制在什么范围内?参考公式:, .
【题目】某校为了分析本校高中生的性别与是否喜欢数学之间的关系,在高中生中随机地抽取了90名学生调查,得到了如下列联表:
喜欢数学 | 不喜欢数学 | 总计 | |
男 | 30 | ① | 45 |
女 | ② | 25 | 45 |
总计 | ③ | ④ | 90 |
(1)求①②③④处分别对应的值;
(2)能有多大把握认为“高中生的性别与喜欢数学”有关?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.