题目内容

在长方体ABCDA1B1C1D1中,AB=4,BC=3,CC1=2,如图:
(1)求证:平面A1BC1∥平面ACD1
(2)求(1)中两个平行平面间的距离;
(3)求点B1到平面A1BC1的距离.
(1)同解析 (2) 两平行平面间的距离为. (3) B1到平面A1BC1的距离等于.
.(1)证明:由于BC1AD1,则BC1∥平面ACD1
同理,A1B∥平面ACD1,则平面A1BC1∥平面ACD1
(2)解:设两平行平面A1BC1ACD1间的距离为d,则d等于D1到平面A1BC1的距离.易求A1C1=5,A1B=2BC1=,则cosA1BC1=,则sinA1BC1=,则S=,由于,则S·d=·BB1,代入求得d=,即两平行平面间的距离为.
(3)解:由于线段B1D1被平面A1BC1所平分,则B1D1到平面A1BC1的距离相等,则由(2)知点B1到平面A1BC1的距离等于.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网