题目内容

7.计算:$\frac{4}{1×3}$-$\frac{8}{3×5}$+$\frac{12}{5×7}$-$\frac{16}{7×9}$+…+(-1)n+1$\frac{4n}{(2n-1)(2n+1)}$=$\left\{\begin{array}{l}1+\frac{1}{2n+1},n为奇数\\ 1-\frac{1}{2n+1},n为偶数\end{array}\right.$.

分析 通过裂项法,利用n为奇数与偶数,分别求解数列的和即可.

解答 解:因为$\frac{4n}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}+\frac{1}{2n+1}$,
所以当n为奇数时,
$\frac{4}{1×3}$-$\frac{8}{3×5}$+$\frac{12}{5×7}$-$\frac{16}{7×9}$+…+(-1)n+1$\frac{4n}{(2n-1)(2n+1)}$
=$1+\frac{1}{3}$$-\frac{1}{3}-\frac{1}{5}$$+\frac{1}{5}+\frac{1}{7}$-…$-\frac{1}{2n-3}-\frac{1}{2n-1}$$+\frac{1}{2n-1}+\frac{1}{2n+1}$
=1+$\frac{1}{2n+1}$.
当n为偶数时,
$\frac{4}{1×3}$-$\frac{8}{3×5}$+$\frac{12}{5×7}$-$\frac{16}{7×9}$+…+(-1)n+1$\frac{4n}{(2n-1)(2n+1)}$
=$1+\frac{1}{3}$$-\frac{1}{3}-\frac{1}{5}$$+\frac{1}{5}+\frac{1}{7}$-…$+\frac{1}{2n-3}+\frac{1}{2n-1}$$-\frac{1}{2n-1}-\frac{1}{2n+1}$
=1-$\frac{1}{2n+1}$.
故答案为:$\left\{\begin{array}{l}1+\frac{1}{2n+1},n为奇数\\ 1-\frac{1}{2n+1},n为偶数\end{array}\right.$.

点评 本题考查数列求和,裂项法的应用,考查分类讨论的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网