ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖªÔ²F1£º£¨x+1£©2+y2=8£¬µãF2£¨1£¬0£©£¬µãQÔÚÔ²F1ÉÏÔ˶¯£¬QF2µÄ´¹Ö±Æ½·ÖÏß½»QF1ÓÚµãP£®£¨1£©Ç󶯵ãPµÄ¹ì¼£CµÄ·½³Ì£»
£¨2£©ÉèM¡¢N·Ö±ðÊÇÇúÏßCÉϵÄÁ½¸ö²»Í¬µã£¬ÇÒµãMÔÚµÚÒ»ÏóÏÞ£¬µãNÔÚµÚÈýÏóÏÞ£¬Èô$\overrightarrow{OM}+2\overrightarrow{ON}=2\overrightarrow{O{F_1}}$£¬OΪ×ø±êԵ㣬ÇóÖ±ÏßMNµÄбÂÊ£»
£¨3£©¹ýµã$S£¨0£¬-\frac{1}{3}£©$µÄ¶¯Ö±Ïßl½»ÇúÏßCÓÚA¡¢BÁ½µã£¬ÇóÖ¤£ºÒÔABΪֱ¾¶µÄÔ²ºã¹ý¶¨µãT£¨0£¬1£©£®
·ÖÎö £¨1£©ÈçͼËùʾ£¬|PF1|+|PF2|=|QF1|=R=2$\sqrt{2}$£¾|F1F2|=2£¬¿ÉÖª£º¶¯µãPµÄ¹ì¼£ÎªÍÖÔ²£¬Éè±ê×¼·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©£¬¿ÉµÃa=$\sqrt{2}$£¬c=1£¬b2=a2-c2£®
¼´¿ÉµÃ³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬F1£¨-1£¬0£©£®ÓÉÓÚ$\overrightarrow{OM}+2\overrightarrow{ON}=2\overrightarrow{O{F_1}}$£¬¿ÉµÃx1+2x2=-2£¬y1+2y2=0£®´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{£¨2+2{x}_{2}£©^{2}}{2}+4{y}_{2}^{2}=1$=1£¬ÓÖ$\frac{{x}_{2}^{2}}{2}+{y}_{2}^{2}=1$£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ökMN=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$£®
£¨3£©¼ÙÉèÔÚyÖáÉÏ´æÔÚ¶¨µãT£¨0£¬t£©£¬Ê¹ÒÔABΪֱ¾¶µÄÔ²ºã¹ýÕâ¸öµã£®ÉèÖ±ÏßABµÄ·½³ÌΪy=kx-$\frac{1}{3}$£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì»¯Îª£¨1+2k2£©x2-$\frac{4}{3}$kx-$\frac{16}{9}$=0£¬°Ñ¸ùÓëϵÊýµÄ¹Øϵ´úÈë$\overrightarrow{TA}•\overrightarrow{TB}$=0£¬½â³ö¼´¿É£®
½â´ð ½â£º£¨1£©ÈçͼËùʾ£¬¡ß|PF1|+|PF2|=|QF1|=R=2$\sqrt{2}$£¾|F1F2|=2£¬
¡à¶¯µãPµÄ¹ì¼£ÎªÍÖÔ²£¬Éè±ê×¼·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©£¬a=$\sqrt{2}$£¬c=1£¬b2=1£®
¡à·½³ÌCΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$=1£®
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬F1£¨-1£¬0£©£®¡ß$\overrightarrow{OM}+2\overrightarrow{ON}=2\overrightarrow{O{F_1}}$£¬
¡àx1+2x2=-2£¬y1+2y2=0£®
¡àx1=-2-2x2£¬y1=-2y2£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{£¨2+2{x}_{2}£©^{2}}{2}+4{y}_{2}^{2}=1$=1£¬ÓÖ$\frac{{x}_{2}^{2}}{2}+{y}_{2}^{2}=1$£¬
ÁªÁ¢½âµÃ$\left\{\begin{array}{l}{{x}_{2}=-\frac{5}{4}}\\{{y}_{2}=-\frac{\sqrt{14}}{8}}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{{x}_{1}=\frac{1}{2}}\\{{y}_{1}=\frac{\sqrt{14}}{4}}\end{array}\right.$£®
¡àkMN=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{3\sqrt{14}}{14}$£®
£¨3£©¼ÙÉèÔÚyÖáÉÏ´æÔÚ¶¨µãT£¨0£¬t£©£¬Ê¹ÒÔABΪֱ¾¶µÄÔ²ºã¹ýÕâ¸öµã£®ÉèÖ±ÏßABµÄ·½³ÌΪy=kx-$\frac{1}{3}$£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
Ôò$\overrightarrow{TA}•\overrightarrow{TB}$=£¨x1£¬y1-t£©•£¨x2£¬y2-t£©=x1x2+£¨y1-t£©£¨y2-t£©
=x1x2+$£¨k{x}_{1}-\frac{1}{3}£©£¨k{x}_{2}-\frac{1}{3}£©$-t$[k£¨{x}_{1}+{x}_{2}£©-\frac{2}{3}]$+t2=£¨1+k2£©x1x2-$\frac{1}{3}$£¨k+kt£©£¨x1+x2£©£¨x1+x2£©+$\frac{1}{9}$+$\frac{2}{3}t$+t2=0£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx-\frac{1}{3}}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$£¬»¯Îª£¨1+2k2£©x2-$\frac{4}{3}$kx-$\frac{16}{9}$=0£¬¡÷£¾0ºã³ÉÁ¢£®
¡àx1+x2=$\frac{4k}{3£¨1+2{k}^{2}£©}$£¬x1x2=-$\frac{16}{9£¨1+2{k}^{2}£©}$£®
´úÈëÉÏʽ¿ÉµÃ£º-$\frac{16£¨1+{k}^{2}£©}{9£¨1+2{k}^{2}£©}$-$\frac{4k£¨k+3kt£©}{9£¨1+2{k}^{2}£©}$+$\frac{1}{9}$+$\frac{2}{3}t$+t2=0£¬»¯Îª£¨18t2-18£©k2+£¨9t2+6t-15£©=0£¬
¡à$\left\{\begin{array}{l}{18{t}^{2}-18=0}\\{9{t}^{2}+6t-15=0}\end{array}\right.$£¬½âµÃt=1£®Âú×ã¡÷£¾0£®
¡àÔÚyÖáÉÏ´æÔÚ¶¨µãT£¨0£¬1£©£¬Ê¹ÒÔABΪֱ¾¶µÄÔ²ºã¹ýÕâ¸öµãT£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¶¨Òå¼°Æä±ê×¼·½³Ì¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¸ùÓëϵÊýµÄ¹Øϵ¡¢Ô²µÄÐÔÖÊ¡¢ÏòÁ¿×ø±êÔËË㣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
A£® | $\sqrt{3}$ | B£® | ¡À$\sqrt{3}$ | C£® | $\frac{{\sqrt{3}}}{3}$ | D£® | ¡À$\frac{{\sqrt{3}}}{3}$ |