题目内容

20.若函数f(x)=4x3-ax+3在[-$\frac{1}{2}$,$\frac{1}{2}$]上是单调函数,则实数a的取值范围是a≤0或a≥3.

分析 求出函数的导函数,函数f(x)=4x3-ax+3在[-$\frac{1}{2}$,$\frac{1}{2}$]上是单调函数,所以f′(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]符号不变,分离变量后利用函数的单调性求实数a的范围.

解答 解:由f(x)=4x3-ax+3,所以f′(x)=12x2-a,
因为函数f(x)=4x3-ax+3在[-$\frac{1}{2}$,$\frac{1}{2}$]上是单调函数,
所以以f′(x)=12x2-a在[-$\frac{1}{2}$,$\frac{1}{2}$]上符号不变,可得-a≥0或12×$(\frac{1}{2})^{2}-a≤0$恒成立.
解得a≤0或a≥3.
故答案为:a≤0或a≥3.

点评 本题考查了函数的单调性与函数的导函数的关系,二次函数的简单性质的应用,考查了利用函数的单调性求函数的最值,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网