题目内容
【题目】对于函数,有下列五个命题:
①若存在反函数,且与反函数图象有公共点,则公共点一定在直线上;
②若在上有定义,则一定是偶函数;
③若是偶函数,且有解,则解的个数一定是偶数;
④若是函数的周期,则,也是函数的周期;
⑤是函数为奇函数的充分不必要条件。
从中任意抽取一个,恰好是真命题的概率为 ( )
A.B.C.D.
【答案】B
【解析】
①若y=f(x)存在反函数,且与反函数图象有公共点,则公共点不一定在直线y=x上,如函数f(x)=,反函数是其本身,公共点是整个函数图象;
②若y=f(x)在R上有定义,则y=f(|x|)一定是偶函数,因f(|-x|)=f(|x|)对于任意x恒成立,故正确;
③若y=f(x)是偶函数,且f(x)=0有解,则解的个数一定是偶数不正确,如y=x2,是偶函数,x2=0的解只有一个,不是偶数个;
④若T(T≠0)是函数y=f(x)的周期,则f(x+T)=f(x),从而f(x+nT)=f(x),则nT(n∈N),也是函数y=f(x)的周期;
⑤f(0)=0是函数y=f(x)为奇函数的充分也不必要条件,不正确,f(x)=x2时,f(0)=0,而f(x)=x2是偶函数.
故正确的命题有2个,
则从中任意抽取一个,恰好是真命题的概率为
故选B.
【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了人,他们年龄的频数分布及支持“生育二胎”人数如下表:
年龄 | ||||||
频数 | ||||||
支持“生二胎” |
(1)由以上统计数据填下面列联表,并问是否有的把握认为以岁为分界点对“生育二胎放开”政策的支持度有差异;
年龄不低于岁的人数 | 年龄低于岁的人数 | 合计 | |
支持 | |||
不支持 | |||
合计 |
(2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据:,,.