题目内容
【题目】在直角坐标系中,直线的参数方程为(,为参数),曲线的参数方程为(为参数),直线与曲线交于,两点.
(1)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求曲线的极坐标方程;
(2)若,点,求的值.
【答案】(1);(2)
【解析】
(1)先把参数方程变为普通方程,再根据,把普通方程变为极坐标方程;
(2)把直线的参数方程代入圆的普通方程得到一个关于t的一元二次方程,根据韦达定理求出的值,即可得到本题答案.
(1)因为曲线的参数方程为(为参数),
所以曲线的普通方程为,即.
又所以曲线的极坐标方程为.
(2)由直线的参数方程易知,直线的普通方程为.
由(1)知,曲线是圆心为,半径为的圆.因为,
所以圆心到直线的距离为,所以
解得或(舍去),将直线的参数方程(为参数)
代入曲线的直角坐标方程得
整理得,则.
设,对应的参数分别为,,,
由于点在圆外,所以
【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度()的7组观测数据,其散点图如所示:
根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:
27 | 74 | 182 |
表中,.
(1)求和温度的回归方程(回归系数结果精确到);
(2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括与),估计该品种一只昆虫的产卵数的范围.(参考数据:,,,,.)
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为.
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 (单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益 (单位:万元) | 2 | 3 | 2 | 7 |
由表中的数据显示, 与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.