题目内容
【题目】如图,圆O是一半径为10米的圆形草坪,为了满足周边市民跳广场舞的需要,现规划在草坪上建一个广场,广场形状如图中虚线部分所示的曲边四边形,其中A,B两点在⊙O上,A,B,C,D恰是一个正方形的四个顶点.根据规划要求,在A,B,C,D四点处安装四盏照明设备,从圆心O点出发,在地下铺设4条到A,B,C,D四点线路OA,OB,OC,OD.
(1)若正方形边长为10米,求广场的面积;
(2)求铺设的4条线路OA,OB,OC,OD总长度的最小值.
【答案】(1)100(平方米)(2)(米)
【解析】
(1)连接AB,广场面积等于正方形面积加上弓形面积,计算得到答案.
(2)过O作OK⊥CD,垂足为K,过O作OH⊥AD(或其延长线),垂足为H,设∠OAD=θ(0<θ),OD,计算得到答案.
(1)连接AB,∵AB=10,∴正方形ABCD的面积为100,
又OA=OB=10,∴△AOB为正三角形,则,
而圆的面积为100π,∴扇形AOB的面积为,
又三角形AOB的面积为.∴弓形面积为,
则广场面积为100(平方米);
(2)过O作OK⊥CD,垂足为K,过O作OH⊥AD(或其延长线),垂足为H,
设∠OAD=θ(0<θ),则OH=10sinθ,AH=10cosθ,
∴DH=|AD﹣AH|=|2OH﹣AH|=|20sinθ﹣10cosθ|,
∴OD.
∴当θ时,.
∴4条线路OA,OB,OC,OD总长度的最小值为(米).
练习册系列答案
相关题目