题目内容
【题目】已知函数.
(1)讨论函数的单调性;
(2)当时,记函数在上的最大值为,最小值为,求的取值范围.
【答案】(1)见解析(2)
【解析】
(1)对函数求导,讨论的取值范围,分别求出的范围,从而确定函数的单调性. (2)根据(1)的结论,确定函数在上的单调性,从而确定函数取最值的位置,即可求出的表达式,然后根据的范围求出的取值范围.
解:(1)∵
∴当时,由得,或,由得,,
当时,
当时,由得,或,由得,,
∴当时,的单调递增区间是,,单调递减区间是;
当时,的单调递增区间是;
当时,的单调递增区间是, ,单调递减区间是.
(2)∵当时,,又,
∴由(1)知,在递减,在上递增,
故
又,,
∴,
于是
当时,是关于的减函数,
∴
当时,也是关于的减函数,
∴
综上可得的取值范围是.
练习册系列答案
相关题目
【题目】“互联网”是“智慧城市”的重要内士,市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费.为了解免费在市的使用情况,调査机构借助网络进行了问卷调查,并从参与调査的网友中抽取了人进行抽样分析,得到如下列联表(单位:人):
经常使用免费WiFi | 偶尔或不用免费WiFi | 合计 | |
45岁及以下 | 70 | 30 | 100 |
45岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,判断是否有的把握认为市使用免费的情况与年龄有关;
(2)将频率视为概率,现从该市岁以上的市民中用随机抽样的方法每次抽取人,共抽取次.记被抽取的人中“偶尔或不用免费”的人数为,若每次抽取的结果是相互独立的,求的分布列,数学期望和方差.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |