题目内容
【题目】已知为等差数列,各项为正的等比数列的前项和为,,,__________.在①;②;③这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).
(1)求数列和的通项公式;
(2)求数列的前项和.
【答案】(1)选①:,;选②:,;选③:,;(2)选①:;选②:;选③:
【解析】
(1)根据所选条件,建立方程组,求解基本量,进而可得通项公式;
(2)根据通项公式的特点,选择错位相减法进行求和.
选①解:
(1)设等差数列的公差为,
∵,∴,∴,,
∴,
由,
当时,有,则有,即
当时,,
即,所以是一个以2为首项,2为公比的等比数列.
∴.
(2)由(1)知,
∴,①
,②
①-②得:,
∴.
选②解:
(1)设等差数列的公差为,
∵,∴,∴,
∴,
∴,
设等比数列的公比为,
∵,
∴,
又∵,∴,解得,或(舍),
∴.
(2)由(1)可知,
∴,
,②
①-②得:,
∴.
选③解:
(1)设等差数列的公差为,
∵,∴,∴,,
∴,
∵,,
令,得,即,∴,∴,
∴;
(2)解法同选②的第(2)问解法相同.
练习册系列答案
相关题目
【题目】某工厂生产某种型号的电视机零配件,为了预测今年月份该型号电视机零配件的市场需求量,以合理安排生产,工厂对本年度月份至月份该型号电视机零配件的销售量及销售单价进行了调查,销售单价(单位:元)和销售量(单位:千件)之间的组数据如下表所示:
月份 | ||||||
销售单价(元) | ||||||
销售量(千件) |
(1)根据1至月份的数据,求关于的线性回归方程(系数精确到);
(2)结合(1)中的线性回归方程,假设该型号电视机零配件的生产成本为每件元,那么工厂如何制定月份的销售单价,才能使该月利润达到最大(计算结果精确到)?
参考公式:回归直线方程,其中.
参考数据:.