题目内容
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线
的参数方程为
(
为参数),在以坐标原点
为极点,以
轴正半轴为极轴的极坐标中,圆
的方程为
.
(1)写出直线的普通方程和圆
的直角坐标方程;
(2)若点的坐标为
,圆
与直线
交于
两点,求
的值.
【答案】(1)(2)
【解析】
试题(1)由加减消元得直线的普通方程,由
得圆
的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果
试题解析:解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣
=0
又由得 ρ2=2
ρsinθ,化为直角坐标方程为x2+(y﹣
)2=5;
(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,
得(3﹣t)2+(
t)2=5,即t2﹣3
t+4=0
设t1,t2是上述方程的两实数根,
所以t1+t2=3
又直线l过点P,A、B两点对应的参数分别为t1,t2,
所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目