题目内容
【题目】在△ABC中,若acos2ccos2b,那么a,b,c的关系是( )
A.a+b=cB.a+c=2bC.b+c=2aD.a=b=c
【答案】B
【解析】
根据acos2ccos2b,利用二倍角的余弦函数公式化简,再利用正弦定理化简,整理后把sin(A+C)=sinB代入,利用正弦定理化简即可得到结果.
因为acos2ccos2b,
所以a(1+cosC)+c(1+cosA)=3b,
由正弦定理得:sinA(1+cosC)+sinC(1+cosA)=3sinB,
整理得:sinA+sinAcosC+sinC+cosAsinC=3sinB,
即sinA+sinC+sin(A+C)=3sinB,
∵sin(A+C)=sinB,
∴sinA+sinC+sinB=3sinB,
即sinA+sinC=2sinB,
则由正弦定理化简得,a+c=2b.
故选:B.
练习册系列答案
相关题目
【题目】省环保厅对、、三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:
城 | 城 | 城 | |
优(个) | 28 | ||
良(个) | 32 | 30 |
已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2.
(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;
(2)已知, ,求在城中空气质量为优的天数大于空气质量为良的天数的概率.