题目内容

15.计算:$\frac{{a}^{\frac{2}{3}}+(ab)^{\frac{1}{3}}+{b}^{\frac{2}{3}}}{{x}^{\frac{1}{2}}-{y}^{\frac{1}{2}}}$÷($\frac{{a}^{\frac{1}{3}}-{b}^{\frac{1}{3}}}{{x}^{\frac{1}{2}}+{y}^{\frac{1}{2}}}$)-1•($\frac{b-a}{x-y}$)-1

分析 利用指数幂的运算法则、乘法公式即可得出.

解答 解:原式=$\frac{{a}^{\frac{2}{3}}+(ab)^{\frac{1}{3}}+{b}^{\frac{2}{3}}}{{x}^{\frac{1}{2}}-{y}^{\frac{1}{2}}}$×$\frac{{a}^{\frac{1}{3}}-{b}^{\frac{1}{3}}}{{x}^{\frac{1}{2}}+{y}^{\frac{1}{2}}}$•$\frac{x-y}{b-a}$
=$\frac{a-b}{x-y}×\frac{x-y}{b-a}$
=-1.

点评 本题考查了指数幂的运算法则、乘法公式,考查了计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网