题目内容
【题目】已知.
(Ⅰ)当时,求的极值;
(Ⅱ)若有2个不同零点,求的取值范围.
【答案】(1),; (2).
【解析】
(Ⅰ)求出函数的导数,求其零点,根据零点分析各区间导数的正负,即可求出极值(Ⅱ)根据,分类讨论,分别分析当时,当时,当时导函数的零点,根据零点分析函数的极值情况.
(Ⅰ)当时 ,
令得,,,为增函数,
, ,,为增函数
∴,.
(Ⅱ)
当时,,只有个零点;
当时,
,,为减函数,,,为增函数
而,∴当,,使,
当时,∴ ∴,∴
取,∴ ,∴函数有个零点,
当时,,令得,
①,即时,当变化时 ,变化情况是
∴,∴函数至多有一个零点,不符合题意;
②时,,在单调递增,∴至多有一个零点,不合题意,
③当时,即以时,当变化时,的变化情况是
∴,时,,,∴函数至多有个零点,
综上:的取值范围是.
练习册系列答案
相关题目
【题目】某单位共有10名员工,他们某年的收入如下表:
员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(万元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求该单位员工当年年薪的平均值和中位数;
(2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?
附:线性回归方程中系数计算公式分别为:,,其中、为样本均值.