题目内容
【题目】已知函数.
(1)求的单调区间;
(2)若在上的最大值是,求的值;
(3)记,当时,若对任意,总有成立,试求的最大值.
【答案】(1)增区间;减区间;(2);(3).
【解析】
试题分析:(1)借助题设条件运用导数的知识求解;(2)借助题设运用分类整合思想探求;(3)借助题设构造函数,运用导数的有关知识分析探求.
试题解析:
(1)的定义域是..当时,,故在上是增函数; 当时,令,则(舍去); 当时,,故在上是增函数;当时,,故在上是减函数.
(2)①当时,在上是增函数; 故在上的最大值是 ,显然不合题意. ②若, 即时, ,则在上是增函数,故在上的最大值是 ,不合题意,舍去.
③ 若, 即时,在上是增函数 ,在上是减函数,故在上的最大值是 , 解得,符合. 综合①、②、③得: .
(3), 则,当时,,故时,当在上是减函数,不妨设,则,故等价于,即,记
,从而在上为减函数,由得:
,故恒成立,,又
在上单调递减,
,.故当时,的最大值为.
练习册系列答案
相关题目
【题目】某种产品的年销售量与该年广告费用支出有关,现收集了4组观测数据列于下表:
(万元) | 1 | 4 | 5 | 6 |
(万元) | 30 | 40 | 60 | 50 |
现确定以广告费用支出为解释变量,销售量为预报变量对这两个变量进行统计分析.
(1)已知这两个变量满足线性相关关系,试建立与之间的回归方程;
(2)假如2017年广告费用支出为10万元,请根据你得到的模型,预测该年的销售量.
(线性回归方程系数公式).