题目内容
【题目】设f(x)是奇函数,且在(0,+∞)内是减函数,又f(﹣2)=0,则(x﹣3)f(x)<0的解集是
【答案】(﹣∞,﹣2)∪(0,2)∪(3,+∞)
【解析】解:∵f(x)是奇函数,又f(﹣2)=0,
∴f(﹣2)=﹣f(2)=0,即f(2)=0,
∵(x﹣3)f(x)<0,
∴(I)当x>3时,f(x)<0,
由于f(2)=0,f(x)在(0,+∞)内是减函数,
∴x>3时,f(x)<0成立;
(II)当x<3时,有f(x)>0,
由于f(x)是R上的奇函数,故f(0)=0,
又f(2)=0,f(x)在(0,+∞)内是减函数,
①当0<x<2时,f(x)>0,当2<x<3时,f(x)<0,
∴当0<x<2时,有(x﹣3)f(x)<0;
②当x<0时,由奇函数的性质得,f(x)在(﹣∞,0)内是减函数,
又f(﹣2)=0,当x<﹣2时,f(x)>0;当﹣2<x<0时,f(x)<0.
∴当x<﹣2时,有(x﹣3)f(x)<0.
综上可得,(x﹣3)f(x)<0的解集是(﹣∞,﹣2)∪(0,2)∪(3,+∞).
所以答案是:(﹣∞,﹣2)∪(0,2)∪(3,+∞).
【考点精析】解答此题的关键在于理解函数奇偶性的性质的相关知识,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
练习册系列答案
相关题目