题目内容
12.已知函数y=a-bcos3x(b>0)的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,求函数y=-4asin3bx的单调区间、最大值和最小正周期.分析 由三角函数的值域,列出方程组,求出a,b,再由正弦函数的值域和周期性,即可得到;运用正弦函数的单调区间,
解答 解:( I)由已知条件得$\left\{\begin{array}{l}{a+b=\frac{3}{2}}\\{a-b=-\frac{1}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=1}\end{array}\right.$
∴y=-2sin3x的最小正周期为T=$\frac{2π}{3}$,其最大值为2,
在区间[-$\frac{π}{6}$+$\frac{2kπ}{3}$,$\frac{π}{6}$+$\frac{2kπ}{3}$](k∈z)上是减函数,
在区间[$\frac{π}{6}$+$\frac{2kπ}{3}$,$\frac{π}{2}$+$\frac{2kπ}{3}$](k∈z)上是增函数.
点评 本题考查正弦函数和余弦函数的值域的运用,考查三角函数的周期和单调性,考查运算能力,属于中档题.
练习册系列答案
相关题目
3.若(2,+∞)为函数y=2x-$\frac{a}{x}$的递增区间,则a的取值范围为( )
A. | a≥-8 | B. | -8<a<0 | C. | a<-8 | D. | a>0 |
17.已知函数f(x)=Asin(ωx+φ)(ω>0),如果存在实数x1使得对任意的实数x,都有f(x1)≤f(x)≤
f(x1+2015)成立,则ω的最小值为( )
f(x1+2015)成立,则ω的最小值为( )
A. | $\frac{π}{2015}$ | B. | $\frac{1}{2015}$ | C. | $\frac{π}{4010}$ | D. | $\frac{1}{4010}$ |
4.在△ABC中,角A,B,C的对边分别为a,b,c,若a2-b2-c2=-$\sqrt{3}$bc,则A等于( )
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
1.如图,已知抛物线y2=2px(p>0)的焦点F恰好是双曲线$\frac{x^2}{a^2}-\frac{{y{\;}^2}}{b^2}$=1的右焦点,且两条曲线的交点的连线过F,则该双曲线的离心率为( )
A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{2}+1$ | D. | $\sqrt{2}-1$ |
2.已知椭圆$\frac{{x}^{2}}{m}$+y2=1和双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1有共同的焦点F1、F2,点P是它们的一个公共点,则△PF1F2的面积是( )
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |