题目内容
【题目】“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战和不接受挑战是等可能的,且互不影响.
(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
性别 成绩 | 接受挑战 | 不接受挑战 | 总计 |
男性 | 45 | 15 | 60 |
女性 | 25 | 15 | 40 |
总计 | 70 | 30 | 100 |
根据表中数据,能有有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?
附:,其中.
2.706 | 3.841 | 6.635 | 10.828 | |
0.10 | 0.05 | 0.010 | 0.001 |
【答案】(1)(2)能
【解析】分析:⑴确定基本事件的个数,根据古典概型的概率公式,求得这个人中至少有个人接受挑战的概率
⑵根据列联表,得到的观测值,与临界值比较,即可得到结论
详解:(1)这3个人接受挑战分别记为,,,则,,分别表示这3个人不接受挑战,
这3个人参与该项活动的可能结果为:,,,,,,,共有8种.
其中,至少有2个人接受挑战的可能结果有:,,,共有4种,
根据古典概型的概率公式,所求的概率为.
(2)假设冰桶挑战赛与受邀者的性别无关,根据列联表,得到的观测值为:,
因为,
所以在犯错误的概率不超过0.1的前提下认为“冰桶挑战赛与受邀者的性别无关”.
【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,
9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:
7527 | 0293 | 7140 | 9857 | 0347 | 4373 | 8636 | 6947 | 1417 | 4698 |
0371 | 6233 | 2616 | 8045 | 6011 | 3661 | 9597 | 7424 | 7610 | 4281 |
根据以上数据估计该射击运动员射击4次至少击中3次的概率为_______.