题目内容
【题目】设函数f(x)=(x﹣1)ex﹣kx2(k∈R).
(1)当k=1时,求函数f(x)的单调区间;
(2)当 时,求函数f(x)在[0,k]上的最大值M.
【答案】
(1)解:当k=1时,f(x)=(x﹣1)ex﹣x2,
f'(x)=ex+(x﹣1)ex﹣2x=x(ex﹣2)
令f'(x)=0,解得x1=0,x2=ln2>0
所以f'(x),f(x)随x的变化情况如下表:
x | (﹣∞,0) | 0 | (0,ln2) | ln2 | (ln2,+∞) |
f'(x) | + | 0 | ﹣ | 0 | + |
f(x) | ↗ | 极大值 | ↘ | 极小值 | ↗ |
所以函数f(x)的单调增区间为(﹣∞,0)和(ln2,+∞),单调减区间为(0,ln2)
(2)解:f(x)=(x﹣1)ex﹣kx2,x∈[0,k], .
f'(x)=xex﹣2kx=x(ex﹣2k),f'(x)=0,解得x1=0,x2=ln(2k)
令φ(k)=k﹣ln(2k), ,
所以φ(k)在 上是减函数,∴φ(1)≤φ(k)<φ ,∴1﹣ln2≤φ(k)< <k.
即0<ln(2k)<k
所以f'(x),f(x)随x的变化情况如下表:
x | (0,ln(2k)) | ln(2k) | (ln(2k),k) |
f'(x) | ﹣ | 0 | + |
f(x) | ↘ | 极小值 | ↗ |
f(0)=﹣1,
f(k)﹣f(0)
=(k﹣1)ek﹣k3﹣f(0)
=(k﹣1)ek﹣k3+1
=(k﹣1)ek﹣(k3﹣1)
=(k﹣1)ek﹣(k﹣1)(k2+k+1)
=(k﹣1)[ek﹣(k2+k+1)]
∵ ,∴k﹣1≤0.
对任意的 ,y=ek的图象恒在y=k2+k+1下方,所以ek﹣(k2+k+1)≤0
所以f(k)﹣f(0)≥0,即f(k)≥f(0)
所以函数f(x)在[0,k]上的最大值M=f(k)=(k﹣1)ek﹣k3.
【解析】(1)利用导数的运算法则即可得出f′(x),令f′(x)=0,即可得出实数根,通过列表即可得出其单调区间;(2)利用导数的运算法则求出f′(x),令f′(x)=0得出极值点,列出表格得出单调区间,比较区间端点与极值即可得到最大值.
【考点精析】利用利用导数研究函数的单调性和函数的最大(小)值与导数对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
【题目】为了实现绿色发展,避免能源浪费,某市计划对居民用电实行阶梯收费.阶梯电价原则上以住宅(一套住宅为一户)的月用电量为基准定价,具体划分标准如表:
阶梯级别 | 第一阶梯电量 | 第二阶梯电量 | 第三阶梯电量 |
月用电量范围(单位:) |
从本市随机抽取了100户,统计了今年6月份的用电量,这100户中用电量为第一阶梯的有20户,第二阶梯的有60户,第三阶梯的有20户.
(1)现从这100户中任意选取2户,求至少1户用电量为第二阶梯的概率;
(2)以这100户作为样本估计全市居民的用电情况,从全市随机抽取3户,表示用电量为第二阶梯的户数,求的概率分布列和数学期望.
【题目】“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战和不接受挑战是等可能的,且互不影响.
(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
性别 成绩 | 接受挑战 | 不接受挑战 | 总计 |
男性 | 45 | 15 | 60 |
女性 | 25 | 15 | 40 |
总计 | 70 | 30 | 100 |
根据表中数据,能有有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?
附:,其中.
2.706 | 3.841 | 6.635 | 10.828 | |
0.10 | 0.05 | 0.010 | 0.001 |