题目内容
【题目】设f(x)=alnx+ + x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(1)求a的值;
(2)求函数f(x)的极值.
【答案】
(1)
解:求导函数可得
∵曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
∴f′(1)=0,∴ ,
∴a=﹣1;
(2)
解:由(1)知, (x>0)
=
令f′(x)=0,可得x=1或x= (舍去)
∵0<x<1时,f′(x)<0,函数递减;x>1时,f′(x)>0,函数递增
∴x=1时,函数f(x)取得极小值为3
【解析】(1) 求导函数,利用曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,可得f′(1)=0,从而可求a的值;(2) 由(1)知, (x>0), = ,确定函数的单调性,即可求得函数f(x)的极值.
【考点精析】利用函数的极值与导数对题目进行判断即可得到答案,需要熟知求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
【题目】“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战和不接受挑战是等可能的,且互不影响.
(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
性别 成绩 | 接受挑战 | 不接受挑战 | 总计 |
男性 | 45 | 15 | 60 |
女性 | 25 | 15 | 40 |
总计 | 70 | 30 | 100 |
根据表中数据,能有有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?
附:,其中.
2.706 | 3.841 | 6.635 | 10.828 | |
0.10 | 0.05 | 0.010 | 0.001 |