题目内容
【题目】已知函数有极值,且导函数的极值点是的零点.
(1)求关于的函数关系式,并写出定义域;
(2)证明:.
【答案】(1);(2)证明见解析.
【解析】
(1)根据函数解析式先求得导函数,由极值点存在条件可知,可得;再求得导函数的极值点,即可由导函数的极值点是的零点代入求得等量关系,结合不等式求得定义域.
(2)利用分析法分析可知,若证明,只需证明,利用换元法转化并求得导函数,结合导函数的单调性和最值证明不等式成立即可.
(1)函数,
则,
因为有极值点,所以,
化简可得,
导函数的极值点是的零点.
而导函数的极值点为二次函数顶点的横坐标,所以是的零点.
即,
代入可得,化简可知,
又,即,解得,
,
(2)证明:要证,,
只要证,
只要证,
只要证,
设,,则,
所以,,
,
,
原式得证.
练习册系列答案
相关题目