题目内容
【题目】已知函数(),是的导数.
(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;
(2)已知函数在上单调递减,求的取值范围.
【答案】(1)见解析;(2)
【解析】
(1)设,,注意到在上单增,再利用零点存在性定理即可解决;
(2)函数在上单调递减,则在恒成立,即在上恒成立,构造函数,求导讨论的最值即可.
(1)由已知,,所以,
设,,
当时,单调递增,而,,且在上图象连续
不断.所以在上有唯一零点,
当时,;当时,;
∴在单调递减,在单调递增,故在区间上存在唯一的极小
值点,即在区间上存在唯一的极小值点;
(2)设,,,
∴在单调递增,,
即,从而,
因为函数在上单调递减,
∴在上恒成立,
令,
∵,
∴,
在上单调递减,,
当时,,则在上单调递减,,符合题意.
当时,在上单调递减,
所以一定存在,
当时,,在上单调递增,
与题意不符,舍去.
综上,的取值范围是
练习册系列答案
相关题目