题目内容
5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,离心率为$\frac{\sqrt{2}}{2}$,椭圆C与直线l:y=kx+m相交于E、F两不同点,且直线l与圆O:x2+y2=$\frac{2}{3}$相切于点W(O为坐标原点).(Ⅰ)求椭圆C的方程并证明:OE⊥OF;
(Ⅱ)设λ=$\frac{|EW|}{|FW|}$,求实数λ的取值范围.
分析 (Ⅰ)由题意得2b=2,$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,a2=b2+c2,从而求出椭圆C的方程;
由直线l与圆O相切化简可得m2=$\frac{2}{3}$(1+k2);由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$可得(1+2k2)x2+4kmx+2m2-2=0,从而结合韦达定理及向量的数量积化简可得$\overrightarrow{OE}$•$\overrightarrow{OF}$=0,从而证明.
(Ⅱ)由直线l与圆O相切于W,且$\frac{{x}_{1}^{2}}{2}$+${y}_{1}^{2}$=1,$\frac{{x}_{2}^{2}}{2}$+${y}_{2}^{2}$=1可得λ=$\frac{|EW|}{|FW|}$=$\frac{\sqrt{|OE{|}^{2}-{r}^{2}}}{\sqrt{|OF{|}^{2}-{r}^{2}}}$=$\frac{\sqrt{\frac{{x}_{1}^{2}}{2}+\frac{1}{3}}}{\sqrt{\frac{{x}_{2}^{2}}{2}+\frac{1}{3}}}$,再由x1x2+y1y2=0可得${x}_{2}^{2}$=$\frac{4-2{x}_{1}^{2}}{2+3{x}_{1}^{2}}$;从而化简λ=$\frac{2+3{x}_{1}^{2}}{4}$,从而求实数λ的取值范围.
解答 解:(Ⅰ)由题意得,
2b=2,$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,a2=b2+c2,
解得,a2=2,b2=1;
故椭圆C的方程为$\frac{{x}^{2}}{2}$+y2=1;
∵直线l与圆O相切,
∴圆x2+y2=$\frac{2}{3}$的圆心到直线l的距离d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$=$\sqrt{\frac{2}{3}}$,
∴m2=$\frac{2}{3}$(1+k2);
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$可得,
(1+2k2)x2+4kmx+2m2-2=0,
设E(x1,y1),F(x2,y2);
则x1+x2=-$\frac{4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$,
∴$\overrightarrow{OE}$•$\overrightarrow{OF}$=x1x2+y1y2
=(1+k2)x1x2+km(x1+x2)+m2
=(1+k2)$\frac{2{m}^{2}-2}{1+2{k}^{2}}$-km$\frac{4km}{1+2{k}^{2}}$+m2
=$\frac{3{m}^{2}-2{k}^{2}-2}{1+2{k}^{2}}$=$\frac{2(1+{{k}^{2}}_{\;})-2{k}^{2}-2}{1+2{k}^{2}}$=0,
∴OE⊥OF.
(Ⅱ)∵直线l与圆O相切于W,$\frac{{x}_{1}^{2}}{2}$+${y}_{1}^{2}$=1,$\frac{{x}_{2}^{2}}{2}$+${y}_{2}^{2}$=1,
∴λ=$\frac{|EW|}{|FW|}$=$\frac{\sqrt{|OE{|}^{2}-{r}^{2}}}{\sqrt{|OF{|}^{2}-{r}^{2}}}$=$\frac{\sqrt{{x}_{1}^{2}+{y}_{1}^{2}-\frac{2}{3}}}{\sqrt{{x}_{2}^{2}+{y}_{2}^{2}-\frac{2}{3}}}$=$\frac{\sqrt{\frac{{x}_{1}^{2}}{2}+\frac{1}{3}}}{\sqrt{\frac{{x}_{2}^{2}}{2}+\frac{1}{3}}}$,
由(Ⅰ)知x1x2+y1y2=0,
∴x1x2=-y1y2,即${x}_{1}^{2}$${x}_{2}^{2}$=${y}_{1}^{2}$${y}_{2}^{2}$,
从而${x}_{1}^{2}$${x}_{2}^{2}$=(1-$\frac{{x}_{1}^{2}}{2}$)(1-$\frac{{x}_{2}^{2}}{2}$),
即${x}_{2}^{2}$=$\frac{4-2{x}_{1}^{2}}{2+3{x}_{1}^{2}}$;
∴λ=$\frac{\sqrt{\frac{{x}_{1}^{2}}{2}+\frac{1}{3}}}{\sqrt{\frac{{x}_{2}^{2}}{2}+\frac{1}{3}}}$=$\frac{2+3{x}_{1}^{2}}{4}$,
∵-$\sqrt{2}$≤${x}_{1}^{\;}$≤$\sqrt{2}$,
∴λ∈[$\frac{1}{2}$,2].
点评 本题考查了椭圆的标准方程的求法,利用平面向量的数量积证明垂直,韦达定理的应用,重点考查了学生的化简运算能力,属于难题.
A. | $\frac{7}{20}$ | B. | $\frac{12}{20}$ | C. | $\frac{1}{20}$ | D. | $\frac{2}{20}$ |
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
A. | (0,3) | B. | (3,5) | C. | (-1,0) | D. | (0,3] |
A. | 95.4% | B. | 99.7% | C. | 4.6% | D. | 0.3% |