题目内容
【题目】已知函数.
(1)讨论函数在定义域上的单调性;
(2)令函数,是自然对数的底数,若函数有且只有一个零点,判断与的大小,并说明理由.
【答案】(1)当时,在上单调递增;当或时,在上单调递增, 当时,在上单调递减,在上单调递增;当时,在上单调递减;(2).
【解析】
(1)求出,分四种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)根据函数的单调性求出在上有唯一零点,由已知函数有且仅有一个零点,则,得,令,故,利用导数研究函数的单调性,求出零点的分布情况,从而可求出的取值范围即可.
(1)由已知,且,
①当时,即当时,,
则函数在上单调递增.
②当时,即或时,有两个根,
,因为,所以,
1°当时,令,解得,
当或时,函数在上单调递增,
2°当时,令,,
解得,
当时,函数在上单调递减,
在上单调递增;
3°当时,令,解得,
当时,函数在上单调递减.
(2)函数,
则,
则,所以在上单调增,
当,所以
所以在上有唯一零点,
当,所以为的最小值
由已知函数有且只有一个零点,则
所以则
则,得,
令,所以
则,所以,
所以在单调递减,
因为,
所以在上有一个零点,在无零点,
所以 .
【题目】某制造商3月生产了一批乒乓球,从中随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:
分组 | 频数 | 频率 |
[39.95,39.97) | 10 | |
[39. 97,39.99) | 20 | |
[39.99,40.01) | 50 | |
[40.01,40.03] | 20 | |
合计 | 100 |
(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;
(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm,试求这批球的直径误差不超过0.03 mm的概率;
(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).