题目内容
函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时都有f(x1)≤f(x2),
则称函数f(x)在D上为非减函数,设f(x)在[0,1]上为非减函数,且满足以下条件:(1)
f(0)=0;(2)f()=f(x);(3)f(1-x)=1-f(x),则f()+f()=( )
则称函数f(x)在D上为非减函数,设f(x)在[0,1]上为非减函数,且满足以下条件:(1)
f(0)=0;(2)f()=f(x);(3)f(1-x)=1-f(x),则f()+f()=( )
A. | B. | C.1 | D. |
A
解:∵函数f(x)在[0,1]上为非减函数,①f(0)=0;③f(1-x)+f(x)=1,∴f(1)=1,
令x=,所以有f()=,
又∵②f()=f(x),令x=1,有f()=f(1)=,
令x=,有f()=f()=,f()=f()=,
非减函数性质:当x1<x2时,都有f(x1)≤f(x2),∴<<,有f()≤f()≤f(),
而f()==f(),所以有 f()=,则 f()+f()=.
故答案为:A
令x=,所以有f()=,
又∵②f()=f(x),令x=1,有f()=f(1)=,
令x=,有f()=f()=,f()=f()=,
非减函数性质:当x1<x2时,都有f(x1)≤f(x2),∴<<,有f()≤f()≤f(),
而f()==f(),所以有 f()=,则 f()+f()=.
故答案为:A
练习册系列答案
相关题目