题目内容
17.已知实数x,y满足$\left\{\begin{array}{l}{x≥0}\\{y≤x}\\{2x+y-9≤0}\end{array}\right.$,求z=x-y的最小值.分析 根据二元一次不等式组表示平面区域,画出不等式组表示的平面区域,由z=x-y得y=x-z,利用平移求出z最大值即可.
解答 解:不等式对应的平面区域如图:(阴影部分).
由z=x-y得y=x-z,平移直线y=x-z,
由平移可知当直线y=x-z,当直线和OA重合时,
直线y=x-z的截距最大,此时z取得最小值为0,
即z=x-y的最小值是0.
点评 本题主要考查线性规划的应用,利用图象平行求得目标函数的最值,利用数形结合是解决线性规划问题中的基本方法.
练习册系列答案
相关题目
7.已知区间[-a,2a+1),则实数的a的取值范围是( )
A. | R | B. | [-$\frac{1}{3}$,+∞) | C. | (-$\frac{1}{3}$,+∞) | D. | (-∞,-$\frac{1}{3}$) |
6.在△ABC中,内角A,B,C所对的边分别为a,b,c.若b=2$\sqrt{2}$,c=1,tanB=2$\sqrt{2}$,则a=( )
A. | 2 | B. | 3 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |