题目内容
9.已知集合A={x|$\frac{2x-2}{x-2}$<1},集合B={x|x2+4x-5>0},集合C={x||x-m|<1,m∈R},求:(1)A∩B.
(2)若(A∩B)⊆C,求m的取值范围.
分析 (1)先通过解分式不等式、一元二次不等式、含绝对值不等式,求出集合A,B,C,然后进行交集的运算即可求得A∩B={x|1<x<2};
(2)根据子集的定义即可得到$\left\{\begin{array}{l}{m-1≤1}\\{m+1≥2}\end{array}\right.$,解该不等式组即得m的取值范围.
解答 解:A={x|0<x<2},B={x|x<-5,或x>1},C={x|m-1<x<m+1};
∴(1)A∩B={x|1<x<2};
(2)∵(A∩B)⊆C;
∴$\left\{\begin{array}{l}{m-1≤1}\\{m+1≥2}\end{array}\right.$;
解得1≤m≤2;
∴m的取值范围为[1,2].
点评 考查分式不等式、一元二次不等式,及含绝对值不等式的解法,以及子集的定义.
练习册系列答案
相关题目
4.某学生对一些对数进行运算,如图表格所示:
现在发觉学生计算中恰好有两次地方出错,那么出错的数据是( )
x | 0.21 | 0.27 | 1.5 | 2.8 |
lgx | 2a+b+c-3(1) | 6a-3b-2(2) | 3a-b+c(3) | 1-2a+2b-c(4) |
x | 3 | 5 | 6 | 7 |
lgx | 2a-b(5) | a+c(6) | 1+a-b-c(7) | 2(a+c)(8) |
x | 8 | 9 | 14 | |
lgx | 3-3a-3c(9) | 4a-2b(10) | 1-a+2b(11) |
A. | (3),(8) | B. | (4),(11) | C. | (1),(3) | D. | (1),(4) |
19.设复数z=$\frac{i}{1-i}$,则z的共轭复数的模等于( )
A. | 1 | B. | $\frac{1}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |