题目内容

【题目】勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )

A.B.

C.D.

【答案】A

【解析】

,将圆心角为的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率.

如下图所示,设,则以点为圆心的扇形面积为

等边的面积为,其中一个弓形的面积为

所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,

在勒洛三角形中随机取一点,此点取自正三角形外部的概率,故选:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网