题目内容

【题目】手机支付也称为移动支付,是指允许用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.随着信息技术的发展,手机支付越来越成为人们喜欢的支付方式.某机构对某地区年龄在1575岁的人群是否使用手机支付的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用手机支付的人数如下所示:(年龄单位:岁)

年龄段

[1525

[2535

[3545

[4555

[5565

[6575]

频率

0.1

0.32

0.28

0.22

0.05

0.03

使用人数

8

28

24

12

2

1

1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为使用手机支付与年龄有关?

年龄低于45

年龄不低于45

使用手机支付

不使用手机支付

2)若从年龄在[5565),[6575]的样本中各随机选取2人进行座谈,记选中的4人中使用手机支付的人数为X,求随机变量X的分布列和数学期望.

参考数据:

PK2k0

0.025

0.010

0.005

0.001

k0

3.841

6.635

7.879

10.828

参考公式:

【答案】(1)填表见解析,可以在犯错误的概率不超过0.001的前提下认为使用手机支付与年龄有关(2)详见解析

【解析】

(1)利用已知条件,求解联列表中的数值,求出K2的观测值k,即可判断结果.

(2)X的所有可能取值为0123,求出相应的概率,得到分布列,然后求解期望即可.

解:(1)由统计表可得,低于45岁人数为70人,不低于45岁人数为30人,

可得列联表如下:

年龄低于45

年龄不低于45

使用手机支付

60

15

不使用手机支付

10

15

于是有K2的观测值

故可以在犯错误的概率不超过0.001的前提下认为使用手机支付与年龄有关.

2)由题意可知,X的所有可能取值为0123,相应的概率为:

于是X的分布列为:

X

0

1

2

3

P

所以

练习册系列答案
相关题目

【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如147表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:

编号

1

2

3

4

5

年份

2014

2015

2016

2017

2018

数量(单位:辆)

37

104

147

196

216

1)若私家车的数量与年份编号满足线性相关关系,求关于的线性回归方程,并预测2020年该小区的私家车数量;

2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年己登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:

i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;

ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)

参考公式及数据:对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为:

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网