题目内容
【题目】已知三棱锥的四个顶点均在半径为2的球面上,且满足,,,则三棱锥的侧面积的最大值为( )
A. 2 B. 4 C. 8 D. 16
【答案】C
【解析】
由已知,三棱锥P﹣ABC的四个顶点均在半径为的球面上,且满足:=0,=0,=0,则在P点处PA,PB,PC两两垂直,球直径等于以PA,PB,PC为棱的长方体的对角线,由基本不等式易得到三棱锥P﹣ABC的侧面积的最大值.
∵=0,=0,=0,
∴PA,PB,PC两两垂直,
又∵三棱锥P﹣ABC的四个顶点均在半径为1的球面上,
∴以PA,PB,PC为棱的长方体的对角线即为球的一条直径.
∴16=PA2+PB2+PC2,
则由基本不等式可得PA2+PB2≥2PAPB,PA2+PC2≥2PAPC,PB2+PC2≥2PBPC,
即16=PA2+PB2+PC2≥PAPB+PBPC+PAPC
则三棱锥P﹣ABC的侧面积S=(PAPB+PBPC+PAPC)≤8,
则三棱锥P﹣ABC的侧面积的最大值为8,
故选:C.
【题目】某品牌汽车4S店,对该品牌旗下的A型、B型、C型汽车进行维修保养,每辆车一年内需要维修的人工费用为200元,汽车4S店记录了该品牌三种类型汽车各100辆到店维修的情况,整理得下表:
车型 | A型 | B型 | C型 |
频数 | 20 | 40 | 40 |
假设该店采用分层抽样的方法从上维修的100辆该品牌三种类型汽车中随机抽取10辆进行问卷回访.
(1)从参加问卷到访的10辆汽车中随机抽取两辆,求这两辆汽车来自同一类型的概率;
(2)某公司一次性购买该品牌A、B、C型汽车各一辆,记ξ表示这三辆车的一年维修人工费用总和,求ξ的分布列及数学期望(各型汽车维修的概率视为其需要维修的概率);
(3)经调查,该品牌A型汽车的价格与每月的销售量之间有如下关系:
价格(万元) | 25 | 23.5 | 22 | 20.5 |
销售量(辆) | 30 | 33 | 36 | 39 |
已知A型汽车的购买量y与价格x符合如下线性回归方程: = x+80,若A型汽车价格降到19万元,请你预测月销售量大约是多少?