ÌâÄ¿ÄÚÈÝ
7£®Ò»ÒÑÖªº¯Êýf£¨x£©=cos£¨¦Øx+¦Õ-$\frac{¦Ð}{2}$£©£¨¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòy=f£¨x+$\frac{¦Ð}{6}$£©È¡µÃ×îСֵʱxµÄ¼¯ºÏΪ£¨¡¡¡¡£©A£® | {x|x=k¦Ð-$\frac{¦Ð}{6}$£¬k¡Êz} | B£® | {x|x=k¦Ð-$\frac{¦Ð}{3}$£¬k¡Êz} | C£® | {x|x=2k¦Ð-$\frac{¦Ð}{6}$£¬k¡Êz}} | D£® | {x|x=2k¦Ð-$\frac{¦Ð}{3}$£¬k¡Êz}} |
·ÖÎö ¸ù¾ÝͼÏóÇó³öº¯ÊýµÄ½âÎöʽ£¬½áºÏÈý½Çº¯ÊýµÄÐÔÖʼ´¿ÉµÃµ½½áÂÛ£®
½â´ð ½â£ºf£¨x£©=cos£¨¦Øx+¦Õ-$\frac{¦Ð}{2}$£©=sin£¨¦Øx+¦Õ£©£¬
Ôò$\frac{T}{4}=\frac{7¦Ð}{12}-\frac{¦Ð}{3}=\frac{¦Ð}{4}$£¬¼´º¯Êýf£¨x£©µÄÖÜÆÚT=¦Ð£¬
¼´T=$\frac{2¦Ð}{¦Ø}$=¦Ð£¬
¡à¦Ø=2£¬¼´f£¨x£©=sin£¨2x+¦Õ£©£¬
ÓÉÎåµã¶ÔÓ¦·¨µÃ2¡Á$\frac{¦Ð}{3}$+¦Õ=$\frac{¦Ð}{2}$£¬
½âµÃ¦Õ=-$\frac{¦Ð}{6}$£¬
¼´f£¨x£©=sin£¨2x-$\frac{¦Ð}{6}$£©£¬
Ôòy=f£¨x+$\frac{¦Ð}{6}$£©=sin[2£¨x+$\frac{¦Ð}{6}$£©-$\frac{¦Ð}{6}$]=sin£¨2x+$\frac{¦Ð}{6}$£©£¬
ÓÉ2x+$\frac{¦Ð}{6}$=-$\frac{¦Ð}{2}$+2k¦Ð£¬
½âµÃx=k¦Ð-$\frac{¦Ð}{3}$£¬k¡Êz£¬
¼´y=f£¨x+$\frac{¦Ð}{6}$£©È¡µÃ×îСֵʱxµÄ¼¯ºÏΪ{x|x=k¦Ð-$\frac{¦Ð}{3}$£¬k¡Êz}£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÈý½Çº¯Êý×îÖµµÄÇó½â£¬ÀûÓÃͼÏóÇó³öÈý½Çº¯ÊýµÄ½âÎöʽÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®ÒÑÖªº¯Êýf£¨x£©=tan£¨2x-$\frac{¦Ð}{3}$£©£¬ÔòÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
A£® | º¯Êýf£¨x£©µÄÖÜÆÚΪ$\frac{¦Ð}{2}$ | |
B£® | º¯Êýf£¨x£©µÄÖµÓòΪR | |
C£® | µã£¨$\frac{¦Ð}{6}$£¬0£©ÊǺ¯Êýf£¨x£©µÄͼÏóÒ»¸ö¶Ô³ÆÖÐÐÄ | |
D£® | f£¨$\frac{2¦Ð}{5}$£©£¼f£¨$\frac{3¦Ð}{5}$£© |
12£®ÈôʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}2x+y¡Ü4\\ x¡Ý1\\ y¡Ý1.\end{array}\right.$Ôòx+3yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£® | 12 | B£® | 7 | C£® | $\frac{9}{2}$ | D£® | 4 |
16£®Ä³Ð£¾ÙÐÐÍæ¾ß»úÆ÷È˾ºËÙ±ÈÈü£¬ÒªÇó²ÎÈüµÄ»úÆ÷ÈËÔڹ涨µÄ¹ìµÀÖÐÇ°ÐÐ5ÃëÖÓ£¬ÒÔÔ˶¯Â·³ÌµÄ³¤¶ÌÀ´¾ö¶¨±ÈÈü³É¼¨£®ÒÑ֪ij²ÎÈüÍæ¾ß»úÆ÷È˵ÄÔ˶¯ËÙ¶Èv£¨µ¥Î»£ºÃ×/Ã룩ºÍʱ¼ät£¨µ¥Î»£ºÃ룩Âú×ãµÄ¹Øϵ´óÖÂÈçͼËùʾ£¬ÄÇô¸ÃÍæ¾ß»úÆ÷ÈËÔ˶¯5ÃëÖÓºó£¬ÐÐÊ»µÄ·³Ìs£¨µ¥Î»£ºÃ×£©¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£® | 25 | B£® | $\frac{55}{2}$ | C£® | $\frac{100}{3}$ | D£® | 45 |