题目内容
15.如图,一个旋转体沙漏,上部为一倒立圆台,下部为一圆柱,假定单位时间流出的沙量固定,并且沙的上表面总能保持平整,设沙漏内剩
余沙的高度h与时间t的函数为h=f(t),则最接近f(t)的图象的是( )
A. | B. | C. | D. |
分析 根据几何体的体积,分两部分,再观察沙子的底面积的变化趋势,即可得到答案.
解答 解:分两部分,第一部分,沙子在圆台里,随着时间的增加,沙子的上底面越来越小,则沙漏内剩余沙的高度h减少的越来越快,
第二部分,沙子在圆柱里,随着时间的增加,沙子的底面积不变,则沙漏内剩余沙的高度h减少量是不变的,
综上所述,只有A符合,
故选:A
点评 本题考查了函数图象的识别,关键是找清h的变化关系,属于基础题.
练习册系列答案
相关题目
3.已知向量$\overrightarrow{a},\overrightarrow{b}$,命题p:$\overrightarrow{a}•\overrightarrow{b}$=-${\overrightarrow{a}}^{2}$,命题q:$\overrightarrow{a}$=-$\overrightarrow{b}$,则p是q的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
10.已知全集U=R,集合A={x∈R|-2≤2x≤1},集合B={x∈R||x|<1},则CU(A∩B)=( )
A. | (-∞,-1]∪($\frac{1}{2}$,+∞) | B. | (-1,$\frac{1}{2}$] | C. | (-∞,-1)∪[-$\frac{1}{2}$,+∞) | D. | (-1,-$\frac{1}{2}$) |
7.一已知函数f(x)=cos(ωx+φ-$\frac{π}{2}$)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则y=f(x+$\frac{π}{6}$)取得最小值时x的集合为( )
A. | {x|x=kπ-$\frac{π}{6}$,k∈z} | B. | {x|x=kπ-$\frac{π}{3}$,k∈z} | C. | {x|x=2kπ-$\frac{π}{6}$,k∈z}} | D. | {x|x=2kπ-$\frac{π}{3}$,k∈z}} |