题目内容
已知函数
.
(1)当
时,指出
的单调递减区间和奇偶性(不需说明理由);
(2)当
时,求函数
的零点;
(3)若对任何
不等式
恒成立,求实数
的取值范围。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332327967.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332343340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332359447.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332343340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332390622.png)
(3)若对任何
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332405495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332421526.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332437283.png)
(1)递减区间为
,函数
既不是奇函数也不是偶函数;(2)
或
;(3)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332452480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332359447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332468793.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332483345.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332499540.png)
试题分析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332343340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240313325303434.png)
(2)实际上就是解方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332546699.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332546437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332561423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332577459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332593520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332608347.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332608266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332437283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332639366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332437283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332671461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332686599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332686713.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332702450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332717465.png)
试题解析:1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332343340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332452480.png)
函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332359447.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332764931.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332780585.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332546699.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240313328421725.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240313328581249.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240313328731085.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332483345.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332889365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332437283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332421526.png)
故只需考虑
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332936553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332951607.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332967712.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240313329831331.png)
又函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332998683.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031333014422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240313330291005.png)
函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031333045721.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031333061620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332452480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240313330921045.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031333107569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031332437283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031333139670.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容