题目内容
在△ABC中,内角A,B,C的对边分别为a,b,c,若sinC=2sinA,b=
a.
(1)求角B;
(2)若△ABC的面积为2
,求函数f(x)=2sin2(x+π)+cos(2x-B)-a的单调增区间.
3 |
(1)求角B;
(2)若△ABC的面积为2
3 |
(1)∵sinC=2sinA,由正弦定理可得:c=2a
又∵b=
a,
∴cosB=
=
=
∴B=
(2)S△ABC=
•ac•sinB=
×a×2a•sin
=2
∴a=2
∴f(x)=2sin2x+cos(2x-B)-a=1-cos2x+cos(2x-
)-2
=-cos2x+
cos2x+
sin2x-1=
sin2x-
cos2x-1
=sin(2x-
)-1.
∴令2x-
∈[2kπ-
,2kπ+
]
解得x∈[kπ-
,kπ+
],k∈Z.
∴函数的单调增区间:[kπ-
,kπ+
],k∈Z.
又∵b=
3 |
∴cosB=
a2+c2-b2 |
2ac |
4a2+a2-(
| ||
2•2a•a |
1 |
2 |
∴B=
π |
3 |
(2)S△ABC=
1 |
2 |
1 |
2 |
π |
3 |
3 |
∴f(x)=2sin2x+cos(2x-B)-a=1-cos2x+cos(2x-
π |
3 |
=-cos2x+
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
=sin(2x-
π |
6 |
∴令2x-
π |
6 |
π |
2 |
π |
2 |
解得x∈[kπ-
π |
6 |
π |
3 |
∴函数的单调增区间:[kπ-
π |
6 |
π |
3 |
练习册系列答案
相关题目