题目内容
已知△ABC的三边长a=3,b=5,c=6,则△ABC的面积为( )
A.
| B.2
| C.
| D.2
|
∵a=3,b=5,c=6,
∴由余弦定理得:cosA=
=
=
,
∴sinA=
=
,
则S△ABC=
bcsinA=
×5×6×
=2
.
故选B
∴由余弦定理得:cosA=
b2+c2-a2 |
2bc |
25+36-9 |
60 |
13 |
15 |
∴sinA=
1-cos2A |
2
| ||
15 |
则S△ABC=
1 |
2 |
1 |
2 |
2
| ||
15 |
14 |
故选B

练习册系列答案
相关题目